Receptor Signaling Cells as a Repressor of Hormone-Activated Androgen HOXB13 Induces Growth Suppression of Prostate Cancer

نویسندگان

  • Chaeyong Jung
  • Ran-Sook Kim
  • Hong-Ji Zhang
  • Sang-Jin Lee
  • Meei-Huey Jeng
چکیده

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of HOXB13 was limited to ARexpressing prostate cells. Reporter transcription assay demonstrated that HOXB13 significantly suppressed hormone-mediated AR activity in a dose-responsive manner, and suppression was specific to AR with which HOXB13 physically interacts. Overexpression of HOXB13 further downregulated the androgen-stimulated expression of prostate-specific antigen, and suppression of endogenous HOXB13 stimulated transactivation of AR. Functionally, HOXB13 suppressed growth of LNCaP prostate cancer cells, which could be counteracted by additional hormone-activated AR. On the other hand, the growth-suppressive function of HOXB13 in ARnegative CV-1 cells was not affected by AR. These results suggest that HOXB13 functions as an AR repressor to modulate the complex AR signaling and subsequent growth regulation of prostate cancer cells. In addition to the loss of HOXB13 expression, maintaining AR may be an important step for prostate cancer cells to tolerate the suppressor function of HOXB13. Altogether, our data present a novel mechanism for the HOXB13-mediated repression of AR signaling, which can be interpreted to a growth-suppressive event.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling.

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of...

متن کامل

HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression

During the prostate cancer (PCa) development and its progression into hormone independency, androgen receptor (AR) signals play a central role by triggering the regulation of target genes, including prostate-specific antigen. However, the regulation of these AR-mediated target genes is not fully understood. We have previously demonstrated a unique role of HOXB13 homeodomain protein as an AR rep...

متن کامل

HOXB13-mediated suppression of p21WAF1/CIP1 regulates JNK/c-Jun signaling in prostate cancer cells.

Many prostate cancer (PCa) patients die of recurrent disease due to the emergence of hormone-independent cancer cells of which the mechanism is not fully understood. Our previous studies demonstrated that most castration- resistant prostate cancers (CRPC) overexpress the HOXB13 transcription factor to confer positive growth signals. Since HOXB13 also suppresses p21WAF1/CIP1 (p21) expression, we...

متن کامل

Mitogen-activated protein kinase kinase kinase 1 activates androgen receptor-dependent transcription and apoptosis in prostate cancer.

Mitogen-activated protein (MAP) kinases phosphorylate the estrogen receptor and activate transcription from estrogen receptor-regulated genes. Here we examine potential interactions between the MAP kinase cascade and androgen receptor-mediated gene regulation. Specifically, we have studied the biological effects of mitogen-activated protein kinase kinase kinase 1 (MEKK1) expression in prostate ...

متن کامل

Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MAPK signals in Smad1.

Alterations in the signaling pathways of bone morphogenetic proteins (BMPs) and activation of the ERK/MAP kinase (MAPK) pathway by growth factors have been implicated in the development and progression of prostate cancer. Smad1 acts as a substrate for MAPKs and also performs a central role in transmitting signals from BMPs. We found that BMPs/Smad1 signaling inhibits the growth of androgen-sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004